Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.391
Filtrar
1.
Nature ; 628(8006): 162-170, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538791

RESUMO

Ageing of the immune system is characterized by decreased lymphopoiesis and adaptive immunity, and increased inflammation and myeloid pathologies1,2. Age-related changes in populations of self-renewing haematopoietic stem cells (HSCs) are thought to underlie these phenomena3. During youth, HSCs with balanced output of lymphoid and myeloid cells (bal-HSCs) predominate over HSCs with myeloid-biased output (my-HSCs), thereby promoting the lymphopoiesis required for initiating adaptive immune responses, while limiting the production of myeloid cells, which can be pro-inflammatory4. Ageing is associated with increased proportions of my-HSCs, resulting in decreased lymphopoiesis and increased myelopoiesis3,5,6. Transfer of bal-HSCs results in abundant lymphoid and myeloid cells, a stable phenotype that is retained after secondary transfer; my-HSCs also retain their patterns of production after secondary transfer5. The origin and potential interconversion of these two subsets is still unclear. If they are separate subsets postnatally, it might be possible to reverse the ageing phenotype by eliminating my-HSCs in aged mice. Here we demonstrate that antibody-mediated depletion of my-HSCs in aged mice restores characteristic features of a more youthful immune system, including increasing common lymphocyte progenitors, naive T cells and B cells, while decreasing age-related markers of immune decline. Depletion of my-HSCs in aged mice improves primary and secondary adaptive immune responses to viral infection. These findings may have relevance to the understanding and intervention of diseases exacerbated or caused by dominance of the haematopoietic system by my-HSCs.


Assuntos
Imunidade Adaptativa , Envelhecimento , Linhagem da Célula , Células-Tronco Hematopoéticas , Linfócitos , Células Mieloides , Rejuvenescimento , Animais , Feminino , Masculino , Camundongos , Imunidade Adaptativa/imunologia , Envelhecimento/imunologia , Linfócitos B/citologia , Linfócitos B/imunologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Inflamação/imunologia , Inflamação/patologia , Linfócitos/citologia , Linfócitos/imunologia , Linfopoese , Células Mieloides/citologia , Células Mieloides/imunologia , Mielopoese , Fenótipo , Linfócitos T/citologia , Linfócitos T/imunologia , Vírus/imunologia
2.
Nature ; 624(7992): 645-652, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38093014

RESUMO

People with diabetes feature a life-risking susceptibility to respiratory viral infection, including influenza and SARS-CoV-2 (ref. 1), whose mechanism remains unknown. In acquired and genetic mouse models of diabetes, induced with an acute pulmonary viral infection, we demonstrate that hyperglycaemia leads to impaired costimulatory molecule expression, antigen transport and T cell priming in distinct lung dendritic cell (DC) subsets, driving a defective antiviral adaptive immune response, delayed viral clearance and enhanced mortality. Mechanistically, hyperglycaemia induces an altered metabolic DC circuitry characterized by increased glucose-to-acetyl-CoA shunting and downstream histone acetylation, leading to global chromatin alterations. These, in turn, drive impaired expression of key DC effectors including central antigen presentation-related genes. Either glucose-lowering treatment or pharmacological modulation of histone acetylation rescues DC function and antiviral immunity. Collectively, we highlight a hyperglycaemia-driven metabolic-immune axis orchestrating DC dysfunction during pulmonary viral infection and identify metabolic checkpoints that may be therapeutically exploited in mitigating exacerbated disease in infected diabetics.


Assuntos
Células Dendríticas , Complicações do Diabetes , Diabetes Mellitus , Suscetibilidade a Doenças , Hiperglicemia , Pulmão , Viroses , Animais , Camundongos , Acetilcoenzima A/metabolismo , Acetilação , Cromatina/genética , Cromatina/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Complicações do Diabetes/imunologia , Complicações do Diabetes/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/imunologia , Diabetes Mellitus/metabolismo , Glucose/metabolismo , Histonas/metabolismo , Hiperglicemia/complicações , Hiperglicemia/imunologia , Hiperglicemia/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/virologia , Linfócitos T/imunologia , Viroses/complicações , Viroses/imunologia , Viroses/mortalidade , Vírus/imunologia , Modelos Animais de Doenças , Humanos
4.
Nature ; 622(7984): 818-825, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37821700

RESUMO

Effective pandemic preparedness relies on anticipating viral mutations that are able to evade host immune responses to facilitate vaccine and therapeutic design. However, current strategies for viral evolution prediction are not available early in a pandemic-experimental approaches require host polyclonal antibodies to test against1-16, and existing computational methods draw heavily from current strain prevalence to make reliable predictions of variants of concern17-19. To address this, we developed EVEscape, a generalizable modular framework that combines fitness predictions from a deep learning model of historical sequences with biophysical and structural information. EVEscape quantifies the viral escape potential of mutations at scale and has the advantage of being applicable before surveillance sequencing, experimental scans or three-dimensional structures of antibody complexes are available. We demonstrate that EVEscape, trained on sequences available before 2020, is as accurate as high-throughput experimental scans at anticipating pandemic variation for SARS-CoV-2 and is generalizable to other viruses including influenza, HIV and understudied viruses with pandemic potential such as Lassa and Nipah. We provide continually revised escape scores for all current strains of SARS-CoV-2 and predict probable further mutations to forecast emerging strains as a tool for continuing vaccine development ( evescape.org ).


Assuntos
Evolução Molecular , Previsões , Evasão da Resposta Imune , Mutação , Pandemias , Vírus , Humanos , Desenho de Fármacos , Infecções por HIV , Evasão da Resposta Imune/genética , Evasão da Resposta Imune/imunologia , Influenza Humana , Vírus Lassa , Vírus Nipah , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Vacinas Virais/imunologia , Vírus/genética , Vírus/imunologia
5.
Nature ; 621(7977): 179-187, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37648857

RESUMO

Tissue resident memory CD8+ T (TRM) cells offer rapid and long-term protection at sites of reinfection1. Tumour-infiltrating lymphocytes with characteristics of TRM cells maintain enhanced effector functions, predict responses to immunotherapy and accompany better prognoses2,3. Thus, an improved understanding of the metabolic strategies that enable tissue residency by T cells could inform new approaches to empower immune responses in tissues and solid tumours. Here, to systematically define the basis for the metabolic reprogramming supporting TRM cell differentiation, survival and function, we leveraged in vivo functional genomics, untargeted metabolomics and transcriptomics of virus-specific memory CD8+ T cell populations. We found that memory CD8+ T cells deployed a range of adaptations to tissue residency, including reliance on non-steroidal products of the mevalonate-cholesterol pathway, such as coenzyme Q, driven by increased activity of the transcription factor SREBP2. This metabolic adaptation was most pronounced in the small intestine, where TRM cells interface with dietary cholesterol and maintain a heightened state of activation4, and was shared by functional tumour-infiltrating lymphocytes in diverse tumour types in mice and humans. Enforcing synthesis of coenzyme Q through deletion of Fdft1 or overexpression of PDSS2 promoted mitochondrial respiration, memory T cell formation following viral infection and enhanced antitumour immunity. In sum, through a systematic exploration of TRM cell metabolism, we reveal how these programs can be leveraged to fuel memory CD8+ T cell formation in the context of acute infections and enhance antitumour immunity.


Assuntos
Linfócitos T CD8-Positivos , Linfócitos do Interstício Tumoral , Neoplasias , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Respiração Celular , Colesterol/metabolismo , Colesterol/farmacologia , Memória Imunológica , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Metabolômica , Ácido Mevalônico/metabolismo , Neoplasias/imunologia , Ubiquinona/metabolismo , Viroses/imunologia , Vírus/imunologia , Mitocôndrias/metabolismo
7.
Front Cell Infect Microbiol ; 13: 1173505, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37465759

RESUMO

The inflammasome is a multiprotein complex that further regulates cell pyroptosis and inflammation by activating caspase-1. The assembly and activation of inflammasome are associated with a variety of diseases. Accumulative studies have shown that inflammasome is a key modulator of the host's defense response to viral infection. Indeed, it has been established that activation of inflammasome occurs during viral infection. At the same time, the host has evolved a variety of corresponding mechanisms to inhibit unnecessary inflammasome activation. Therefore, here, we review and summarize the latest research progress on the interaction between inflammosomes and viruses, highlight the assembly and activation of inflammosome in related cells after viral infection, as well as the corresponding molecular regulatory mechanisms, and elucidate the effects of this activation on virus immune escape and host innate and adaptive immune defenses. Finally, we also discuss the potential therapeutic strategies to prevent and/or ameliorate viral infection-related diseases via targeting inflammasomes and its products.


Assuntos
Interações entre Hospedeiro e Microrganismos , Inflamassomos , Viroses , Vírus , Humanos , Inflamassomos/imunologia , Viroses/imunologia , Viroses/terapia , Vírus/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , Animais
8.
Science ; 380(6644): 478-484, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37141353

RESUMO

Although all multicellular organisms have germ line-encoded innate receptors to sense pathogen-associated molecular patterns, vertebrates also evolved adaptive immunity based on somatically generated antigen receptors on B and T cells. Because randomly generated antigen receptors may also react with self-antigens, tolerance checkpoints operate to limit but not completely prevent autoimmunity. These two systems are intricately linked, with innate immunity playing an instrumental role in the induction of adaptive antiviral immunity. In this work, we review how inborn errors of innate immunity can instigate B cell autoimmunity. Increased nucleic acid sensing, often resulting from defects in metabolizing pathways or retroelement control, can break B cell tolerance and converge into TLR7-, cGAS-STING-, or MAVS-dominant signaling pathways. The resulting syndromes span a spectrum that ranges from chilblain and systemic lupus to severe interferonopathies.


Assuntos
Autoimunidade , Linfócitos B , Interações Hospedeiro-Patógeno , Imunidade Inata , Viroses , Vírus , Animais , Imunidade Adaptativa , Autoimunidade/genética , Linfócitos B/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/genética , Transdução de Sinais , Viroses/imunologia , Vírus/imunologia , Humanos
10.
J Mol Biol ; 435(16): 167976, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-36702393

RESUMO

The cellular defense against viruses involves the assembly of oligomers, granules and membraneless organelles (MLOs) that govern the activation of several arms of the innate immune response. Upon interaction with specific pathogen-derived ligands, a number of pattern recognition receptors (PRRs) undergo phase-separation thus triggering downstream signaling pathways. Among other relevant condensates, inflammasomes, apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) specks, cyclic GMP-AMP synthase (cGAS) foci, protein kinase R (PKR) clusters, ribonuclease L-induced bodies (RLBs), stress granules (SGs), processing bodies (PBs) and promyelocytic leukemia protein nuclear bodies (PML NBs) play different roles in the immune response. In turn, viruses have evolved diverse strategies to evade the host defense. Viral DNA or RNA, as well as viral proteases or proteins carrying intrinsically disordered regions may interfere with condensate formation and function in multiple ways. In this review we discuss current and hypothetical mechanisms of viral escape that involve the disassembly, repurposing, or inactivation of membraneless condensates that govern innate immunity. We summarize emerging interconnections between these diverse condensates that ultimately determine the cellular outcome.


Assuntos
Condensados Biomoleculares , Evasão da Resposta Imune , Imunidade Inata , Vírus , Condensados Biomoleculares/imunologia , Condensados Biomoleculares/virologia , Transdução de Sinais , Vírus/imunologia
11.
Mol Cell ; 83(3): 481-495, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36334591

RESUMO

Viral reproduction is contingent on viral protein synthesis that relies on the host ribosomes. As such, viruses have evolved remarkable strategies to hijack the host translational apparatus in order to favor viral protein production and to interfere with cellular innate defenses. Here, we describe the approaches viruses use to exploit the translation machinery, focusing on commonalities across diverse viral families, and discuss the functional relevance of this process. We illustrate the complementary strategies host cells utilize to block viral protein production and consider how cells ensure an efficient antiviral response that relies on translation during this tug of war over the ribosome. Finally, we highlight potential roles mRNA modifications and ribosome quality control play in translational regulation and innate immunity. We address these topics in the context of the COVID-19 pandemic and focus on the gaps in our current knowledge of these mechanisms, specifically in viruses with pandemic potential.


Assuntos
COVID-19 , Biossíntese de Proteínas , Viroses , Vírus , Humanos , COVID-19/genética , COVID-19/imunologia , Pandemias , Biossíntese de Proteínas/genética , Biossíntese de Proteínas/imunologia , RNA Viral/genética , RNA Viral/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia , Viroses/genética , Viroses/imunologia , Vírus/genética , Vírus/imunologia , Ribossomos/genética , Ribossomos/imunologia , Ribossomos/virologia
12.
Curr Opin Immunol ; 78: 102250, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36209576

RESUMO

Recent advances in our understanding of nucleic acid pattern-recognition receptor (PRR) sensing of viruses have revealed a previously unappreciated level of complexity of the host antiviral response. As well as direct recognition of viral nucleic acid by PRRs, viruses also induce the release of host nucleic acid from the nucleus and mitochondria into the cytosol, which boosts nucleic acid activation of antiviral PRRs. Crosstalk and cooperation between DNA- and RNA-recognition signaling pathways has also been revealed, as has direct restriction of viral genomes in an interferon-independent manner by PRRs, and new roles for inflammasomes in sensing viral nucleic acid. Further, newly identified viral-evasion strategies targeting PRR pathways emphasize the importance of nucleic acid detection during viral infection at the host-pathogen innate immune interface.


Assuntos
Imunidade Inata , Ácidos Nucleicos , Viroses , Humanos , Antivirais , Inflamassomos , Interferons , Ácidos Nucleicos/imunologia , Ácidos Nucleicos/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , RNA , Viroses/imunologia , Viroses/metabolismo , Vírus/imunologia
13.
Nature ; 609(7926): 354-360, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35978192

RESUMO

CD8+ T cells that respond to chronic viral infections or cancer are characterized by the expression of inhibitory receptors such as programmed cell death protein 1 (PD-1) and by the impaired production of cytokines. This state of restrained functionality-which is referred to as T cell exhaustion1,2-is maintained by precursors of exhausted T (TPEX) cells that express the transcription factor T cell factor 1 (TCF1), self-renew and give rise to TCF1- exhausted effector T cells3-6. Here we show that the long-term proliferative potential, multipotency and repopulation capacity of exhausted T cells during chronic infection are selectively preserved in a small population of transcriptionally distinct CD62L+ TPEX cells. The transcription factor MYB is not only essential for the development of CD62L+ TPEX cells and maintenance of the antiviral CD8+ T cell response, but also induces functional exhaustion and thereby prevents lethal immunopathology. Furthermore, the proliferative burst in response to PD-1 checkpoint inhibition originates exclusively from CD62L+ TPEX cells and depends on MYB. Our findings identify CD62L+ TPEX cells as a stem-like population that is central to the maintenance of long-term antiviral immunity and responsiveness to immunotherapy. Moreover, they show that MYB is a transcriptional orchestrator of two fundamental aspects of exhausted T cell responses: the downregulation of effector function and the long-term preservation of self-renewal capacity.


Assuntos
Linfócitos T CD8-Positivos , Receptor de Morte Celular Programada 1 , Proteínas Proto-Oncogênicas c-myb , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células , Autorrenovação Celular , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Imunoterapia , Selectina L/metabolismo , Células Precursoras de Linfócitos T/citologia , Células Precursoras de Linfócitos T/imunologia , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Proteínas Proto-Oncogênicas c-myb/metabolismo , Vírus/imunologia
15.
J Virol ; 96(7): e0020722, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35297670

RESUMO

Long noncoding RNAs (lncRNAs) widely exist in the cells and play important roles in various biological processes. The role of lncRNAs in immunity remains largely unknown. lncRNA BST2-2 (lncBST2-2) was upregulated upon viral infection and dependent on the interferon (IFN)/JAK/STAT signaling pathway. There was no coding potential found in the lncBST2-2 transcript. Overexpression of lncBST2-2 inhibited the replication of hepatitis C virus (HCV), Newcastle disease virus (NDV), vesicular stomatitis virus (VSV), and herpes simplex virus (HSV), while knockdown of lncBST2-2 facilitated viral replication. Further studies showed that lncBST2-2 promoted the phosphorylation, dimerization, and nuclear transport of IRF3, promoting the production of IFNs. Importantly, lncBST2-2 interacted with the DNA-binding domain of IRF3, which augmented TBK1 and IRF3 interaction, thereby inducing robust production of IFNs. Moreover, lncBST2-2 impaired the interaction between IRF3 and PP2A-RACK1 complex, an essential step for the dephosphorylation of IRF3. These data shown that lncBST2-2 promotes the innate immune response to viral infection through targeting IRF3. Our study reveals the lncRNA involved in the activation of IRF3 and provides a new insight into the role of lncRNA in antiviral innate immunity. IMPORTANCE Innate immunity is an important part of the human immune system to resist the invasion of foreign pathogens. IRF3 plays a critical role in the innate immune response to viral infection. In this study, we demonstrated that lncBST2-2 plays an important role in innate immunity. Virus-induced lncBST2-2 positively regulates innate immunity by interacting with IRF3 and blocking the dephosphorylation effect of RACK1-PP2A complex on IRF3, thus inhibiting viral infection. Our study provides a new insight into the role of lncBST2-2 in the regulation of IRF3 signaling activation.


Assuntos
Interações Hospedeiro-Patógeno , Imunidade Inata , RNA Longo não Codificante , Viroses , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata/genética , Fator Regulador 3 de Interferon/metabolismo , Interferons/metabolismo , RNA Longo não Codificante/genética , Viroses/genética , Viroses/imunologia , Replicação Viral , Vírus/imunologia
16.
Cell Host Microbe ; 30(3): 286-288, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35271801

RESUMO

In this issue of Cell Host & Microbe, Talbot-Cooper et al. highlight how viruses develop strategies that can target universal activators of the innate immune response. The authors unravel a common mechanism between poxviruses and paramyxoviruses to limit the expression of antiviral genes and promote virulence.


Assuntos
Interferons , Vírus , Antivirais , Imunidade Inata , Virulência , Vírus/genética , Vírus/imunologia
18.
Mol Immunol ; 142: 105-119, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34973498

RESUMO

In the late 1980s and early 1990s, the hunt for a transporter molecule ostensibly responsible for the translocation of peptides across the endoplasmic reticulum (ER) membrane yielded the successful discovery of transporter associated with antigen processing (TAP) protein. TAP is a heterodimer complex comprised of TAP1 and TAP2, which utilizes ATP to transport cytosolic peptides into the ER across its membrane. In the ER, together with other components it forms the peptide loading complex (PLC), which directs loading of high affinity peptides onto nascent major histocompatibility complex class I (MHC-I) molecules that are then transported to the cell surface for presentation to CD8+ T cells. TAP also plays a crucial role in transporting peptides into phagosomes and endosomes during cross-presentation in dendritic cells (DCs). Because of the critical role that TAP plays in both classical MHC-I presentation and cross-presentation, its expression and function are often compromised by numerous types of cancers and viruses to evade recognition by cytotoxic CD8 T cells. Here we review the discovery and function of TAP with a major focus on its role in cross-presentation in DCs. We discuss a recently described emergency route of noncanonical cross-presentation that is mobilized in DCs upon TAP blockade to restore CD8 T cell cross-priming. We also discuss the various strategies employed by cancer cells and viruses to target TAP expression or function to evade immunosurveillance - along with some strategies by which the repertoire of peptides presented by cells which downregulate TAP can be targeted as a therapeutic strategy to mobilize a TAP-independent CD8 T cell response. Lastly, we discuss TAP polymorphisms and the role of TAP in inherited disorders.


Assuntos
Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 3 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Apresentação de Antígeno/imunologia , Apresentação Cruzada/imunologia , Evasão Tumoral/imunologia , Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Membro 3 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/genética , Células Dendríticas/imunologia , Retículo Endoplasmático/metabolismo , Humanos , Complexo Principal de Histocompatibilidade/imunologia , Neoplasias/imunologia , Transporte Proteico/genética , Linfócitos T Citotóxicos/imunologia , Vírus/imunologia
19.
Viruses ; 14(1)2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35062293

RESUMO

The physiologic function of tripartite motif protein 56 (TRIM56), a ubiquitously expressed E3 ligase classified within the large TRIM protein family, remains elusive. Gene knockdown studies have suggested TRIM56 as a positive regulator of the type I interferon (IFN-I) antiviral response elicited via the Toll-like receptor 3 (TLR3) and cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathways, which detect and respond to danger signals-extracellular double-stranded (ds) RNA and cytosolic dsDNA, respectively. However, to what extent these pathways depend on TRIM56 in human cells is unclear. In addition, it is debatable whether TRIM56 plays a part in controlling the expression of IFN-stimulated genes (ISGs) resulting from IFN-I based antiviral treatment. In this study, we created HeLa-derived TRIM56 null cell lines by gene editing and used these cell models to comprehensively examine the impact of endogenous TRIM56 on innate antiviral responses. Our results showed that TRIM56 knockout severely undermined the upregulation of ISGs by extracellular dsRNA and that loss of TRIM56 weakened the response to cytosolic dsDNA. ISG induction and ISGylation following IFN-α stimulation, however, were not compromised by TRIM56 deletion. Using a vesicular stomatitis virus-based antiviral bioactivity assay, we demonstrated that IFN-α could efficiently establish an antiviral state in TRIM56 null cells, providing direct evidence that TRIM56 is not required for the general antiviral action of IFN-I. Altogether, these data ascertain the contributions of TRIM56 to TLR3- and cGAS-STING-dependent antiviral pathways in HeLa cells and add to our understanding of the roles this protein plays in innate immunity.


Assuntos
DNA/imunologia , Interferon-alfa/imunologia , RNA de Cadeia Dupla/imunologia , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Vírus/imunologia , Animais , Chlorocebus aethiops , Citosol/metabolismo , Células HeLa , Humanos , Imunidade Inata , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Receptor 3 Toll-Like/metabolismo , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética , Células Vero , Vesiculovirus/imunologia
20.
Crit Rev Biochem Mol Biol ; 57(5-6): 477-491, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36939319

RESUMO

Mammalian cells are exquisitely sensitive to the presence of double-stranded RNA (dsRNA), a molecule that they interpret as a signal of viral presence requiring immediate attention. Upon sensing dsRNA cells activate the innate immune response, which involves transcriptional mechanisms driving inflammation and secretion of interferons (IFNs) and interferon-stimulated genes (ISGs), as well as synthesis of RNA-like signaling molecules comprised of three or more 2'-5'-linked adenylates (2-5As). 2-5As were discovered some forty years ago and described as IFN-induced inhibitors of protein synthesis. The efforts of many laboratories, aimed at elucidating the molecular mechanism and function of these mysterious RNA-like signaling oligonucleotides, revealed that 2-5A is a specific ligand for the kinase-family endonuclease RNase L. RNase L decays single-stranded RNA (ssRNA) from viruses and mRNAs (as well as other RNAs) from hosts in a process we proposed to call 2-5A-mediated decay (2-5AMD). During recent years it has become increasingly recognized that 2-5AMD is more than a blunt tool of viral RNA destruction, but a pathway deeply integrated into sensing and regulation of endogenous RNAs. Here we present an overview of recently emerged roles of 2-5AMD in host RNA regulation.


Assuntos
2',5'-Oligoadenilato Sintetase , Interações entre Hospedeiro e Microrganismos , Imunidade Inata , Estabilidade de RNA , RNA , Viroses , Vírus , Animais , Humanos , 2',5'-Oligoadenilato Sintetase/metabolismo , Regiões 3' não Traduzidas , Neoplasias da Mama , DNA Intergênico , Síndrome de Fadiga Crônica , Interferons/metabolismo , Íntrons , Retroelementos , RNA/metabolismo , RNA de Cadeia Dupla/metabolismo , Transdução de Sinais , Viroses/imunologia , Viroses/virologia , Vírus/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...